Evolution- and Structure-Based Computational Strategy Reveals the Impact of Deleterious Missense Mutations on MODY 2 (Maturity-Onset Diabetes of the Young, Type 2)

نویسندگان

  • Doss C. Priya George
  • Chiranjib Chakraborty
  • SA Syed Haneef
  • Nagarajan NagaSundaram
  • Luonan Chen
  • Hailong Zhu
چکیده

Heterozygous mutations in the central glycolytic enzyme glucokinase (GCK) can result in an autosomal dominant inherited disease, namely maturity-onset diabetes of the young, type 2 (MODY 2). MODY 2 is characterised by early onset: it usually appears before 25 years of age and presents as a mild form of hyperglycaemia. In recent years, the number of known GCK mutations has markedly increased. As a result, interpreting which mutations cause a disease or confer susceptibility to a disease and characterising these deleterious mutations can be a difficult task in large-scale analyses and may be impossible when using a structural perspective. The laborious and time-consuming nature of the experimental analysis led us to attempt to develop a cost-effective computational pipeline for diabetic research that is based on the fundamentals of protein biophysics and that facilitates our understanding of the relationship between phenotypic effects and evolutionary processes. In this study, we investigate missense mutations in the GCK gene by using a wide array of evolution- and structure-based computational methods, such as SIFT, PolyPhen2, PhD-SNP, SNAP, SNPs&GO, fathmm, and Align GVGD. Based on the computational prediction scores obtained using these methods, three mutations, namely E70K, A188T, and W257R, were identified as highly deleterious on the basis of their effects on protein structure and function. Using the evolutionary conservation predictors Consurf and Scorecons, we further demonstrated that most of the predicted deleterious mutations, including E70K, A188T, and W257R, occur in highly conserved regions of GCK. The effects of the mutations on protein stability were computed using PoPMusic 2.1, I-mutant 3.0, and Dmutant. We also conducted molecular dynamics (MD) simulation analysis through in silico modelling to investigate the conformational differences between the native and the mutant proteins and found that the identified deleterious mutations alter the stability, flexibility, and solvent-accessible surface area of the protein. Furthermore, the functional role of each SNP in GCK was identified and characterised using SNPeffect 4.0, F-SNP, and FASTSNP. We hope that the observed results aid in the identification of disease-associated mutations that affect protein structure and function. Our in silico findings provide a new perspective on the role of GCK mutations in MODY2 from an evolution-based structure-centric point of view. The computational architecture described in this paper can be used to predict the most appropriate disease phenotypes for large-genome sequencing projects and to provide individualised drug therapy for complex diseases such as diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes.

The transcription factor insulin promoter factor-1 (IPF-1) plays a central role in both the development of the pancreas and the regulation of insulin gene expression in the mature pancreatic beta cell. A dominant-negative frameshift mutation in the IPF-l gene was identified in a single family and shown to cause pancreatic agenesis when homozygous and maturity-onset diabetes of the young (MODY) ...

متن کامل

Identification and Functional Characterisation of Novel Glucokinase Mutations Causing Maturity-Onset Diabetes of the Young in Slovakia

Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of t...

متن کامل

Metabolite Profiling Reveals Normal Metabolic Control in Carriers of Mutations in the Glucokinase Gene (MODY2)

Mutations in the gene encoding glucokinase (GCK) cause a mild hereditary form of diabetes termed maturity-onset diabetes of the young (MODY)2 or GCK-MODY. The disease does not progress over time, and diabetes complications rarely develop. It has therefore been suggested that GCK-MODY represents a metabolically compensated condition, but experimental support for this notion is lacking. Here, we ...

متن کامل

Detection and characterization of two novel mutations in the HNF4A gene in maturity-onset diabetes of the young type 1 in two Japanese families.

BACKGROUND Maturity-onset diabetes of the young (MODY) is a subgroup of monogenic diabetes mellitus, of which MODY1, caused by HNF4A mutations, accounts for only 5% or less and has been rarely reported in East Asian countries. Here we report two novel HNF4A mutations in two Japanese families with MODY1. METHODS Proband 1 is an 8-year-old girl and proband 2 is a 14-year-old girl. Both were non...

متن کامل

[Novel glucokinase mutation in a boy with maturity-onset diabetes of the young].

INTRODUCTION Maturity-onset diabetes of the young (MODY) is a heterogenous group of disorders characterized by an early onset of insulin-independent diabetes mellitus, an autosomal dominant mode of inheritance and a primary defect in beta-cell. There are six subtypes of MODY. MODY2 and MODY3 are the most frequent. CASE OUTLINE We present a nine-year-old boy with intermittent hyperglycaemia. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014